E' un corso di Matematica Generale, articolato nei moduli didattici seguenti:
Insiemi numerici
Algebra lineare: vettori, matrici, sistemi di equazioni lineari
Successioni numeriche. Limiti di successioni
Funzioni reali di una variabile reale
Limiti e continuità
Calcolo differenziale e integrale per funzioni di una variabile reale
Premessa: Elementi di logica e di teoria degli insiemi. Insiemi numerici.
Algebra lineare: Vettori, operazioni con i vettori e loro proprietà, dipendenza lineare. Matrici, operazioni con le matrici e loro proprietà, matrici invertibili. Determinante di una matrice quadrata e sue proprietà. Complemento algebrico di un elemento di una matrice. Rango di una matrice. Sistemi lineari: Teoremi di Rouchè-Capelli e di Cramer. Discussione di un sistema parametrico.
Successioni numeriche: Limiti e loro proprietà. Teoremi dell’unicità, della permanenza del segno e del confronto. Limiti e operazioni algebriche. Forme indeterminate.
Funzioni reali di una variabile reale: Grafici. Funzioni limitate, monotone, composte, invertibili. Funzioni elementari: funzioni lineari e funzioni esponenziali con applicazione alle leggi di capitalizzazione finanziaria. Limiti. Asintoti di una funzione. Continuità in un punto. Classificazione dei punti di discontinuità. Proprietà delle funzioni continue in un intervallo chiuso e limitato: Teoremi di Weirstrass, degli zeri e dei valori intermedi.
Calcolo differenziale: Derivabilità di una funzione in un punto e suo significato geometrico. Relazioni fra continuità e derivabilità. Derivate elementari e regole di derivazione. Teoremi di Fermat, di Rolle e di Lagrange. Test di monotonia e primo teorema di riconoscimento dei punti stazionari. Teorema di de l’Hopital. Confronto fra infinitesimi e infiniti. Teorema di Taylor. Secondo test di riconoscimento dei punti stazionari. Funzioni convesse. Test di convessità. Punti di flesso. Studio del grafico di una funzione.
Calcolo integrale: Integrale secondo Riemann e sue proprietà. Teoremi della media integrale e fondamentale del calcolo integrale. Primitive di una funzione. Integrale indefinito. Integrali immediati. Relazione fra integrale definito e integrale indefinito. Metodi di integrazione indefinita: integrazione per parti e integrazione per sostituzione.
SEDE DI CHIETI
Via dei Vestini,31
Centralino 0871.3551
SEDE DI PESCARA
Viale Pindaro,42
Centralino 085.45371
email: info@unich.it
PEC: ateneo@pec.unich.it
Partita IVA 01335970693